Quiz 10, Linear

Name: _____

1. (4 points) Find the characteristic polynomial and eigenvalue(s), if any exist, for the matrix $\begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$.

2. (3 points) Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . (Hint: Suppose a nonzero **x** satisfies $A\mathbf{x} = \lambda \mathbf{x}$.)

3. (3 points) A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional and one of the other eigenspaces is two-dimensional. Is it possible the A is *not* diagonalizable? Justify your answer.